000 a Earth Inwogro_min    Freedom  000s Spacer 3000 Logobanner 25

Home   Energy   Water   Work   Economy    Solutions    Politics   Team   Products   Recycling   Cars   Ships   Aircrafts   Promotion 

World    Pollution   Air   Weather   Violence    Women    Weapons   Psychology    Plants   Animals   Food    Peace   Faith    Imprint 

English
Deutsch

Energy

Parabolic mirror with Sterling motorParabolic mirror 1901

Since 1900 we could have set up an international solar energy network, all necessary technical elements were available.

I prefer thinking that we should had have done this.

TomFae

Electricity and hydrogen are the energy forms of a new post-fossil period

We have the largest fusion reactor in front of our nose and some are constantly trying to build one here and I wonder why. We have one and we have huge areas available to use this fusion reactor.

We urgently need more energy, it must be cheap and not produce CO².

If we provide the whole world with modernity, then it does not work any more with the many useless devices of inferior quality, even with the many electric cars will not work that way,  you can calculate that. Inevitably, we have to recycle, it also costs energy, we should build huge desalination plants and create this water, on a large scale, to the respective inland ...

We should together create a global energy network whose main base is the use of solar energy in the deserts of the world. That, like a belt around the world, can provide 24 hours of energy, plus hydrogen can be produced directly here with the water, from the desalinations plants at the best. Sun Power plants as of USA, Mexico, South America, Peru, Chile above all, Argentina and Brazil, then half Africa, South Africa, Saudi Arabia and the whole surrounding region, further Iran, Afghanistan down to China. Australia is a bit out of the way, but could be at least completely self-sufficient. A truly world-encompassing belt that ensures energy production almost around the clock. If we could make solar power plants swim, we would be Sunline around the clock. We can do anything if we manage to get enough energy.

Stories like from a science fiction movie and we can do it with a common plan.


Yes, certainly, that's what we could do if we manage to be fair, I say all the time, the moment we do this really big project together, the moment we work really together on this big positive plan, we will feel well because then we are suddenly in the very movie that we all like so much and a TV or a smart-phone, we then only need for the news.

Life in peace and contentment is then too good to spend even a second of it with nonsensical movies.


Hydrogen fusion reactors, a completely different fantasy

Tokamak Reactor Scheme ITER

Tokamak Reaktor Scheme   Sources: energieleben.at / Stern.de

I am often asked about fusion reactors and I would like to answer:

Example:   ITER:

For this research reactor alone, a long-term radioactive waste of 60 tons is expected per year. It will be ready in 2025 at the earliest, will cost around 15 billion euros, there will be operating costs of around 30-50 billion euros and it will never provide energy. The first exploitable results are not expected until after 50 years, by then 300 tons of highly radioactive waste have been generated, the final storage of which should again devour at least 40 billion euros, the dismantling of the plant and the final storage of the waste will then cost 100-200 billion euros. In the best case scenario, we have to reckon with costs of 185 billion euros (tax money) for the eventual realization in 2075 that these reactors are unable to produce more energy than you put in, because it is not yet clear whether the whole thing will ever work.

For comparison:   NOOR:

The largest solar thermal solar power plant in the world costs 2.2 billion euros, the construction period was 3 years, the plant delivers an output of 580 megawatts, immediately after completion and the sun does not provide an operating cost calculation. Only low maintenance costs are incurred and the disposal or dismantling costs are also relatively low. They can easily be paid from the earnings reserves.

NOOR Marocco

Source: Welt.de




Hydrogen and its application as an energy store

There is enough hydrogen on Earth, but there are always two atoms hanging around with one oxygen atom. Or, the hydrogen was burned in conjunction with oxygen. We call this partnership water.



HydrogenOxygenWater

The force that drives the hydrogen atom to oxygen is the electron.

It is the same electron that drives machines or generates light, it brings computers to life, drives refrigerators and is the basis for almost everything that makes our lives easier. Without electrons, we would look very old. We cannot generate electrons directly, but we can move them. This is the basis of our electrical energy. We can create an excess of electrons by movement, which we call voltage. With this voltage (U) counting unit volt it is then possible to force the electrons to work for us and to produce power (P), specified in watts. We call his path through a conductor and the resistance that serves us, current flow (I), the amount of which we specify in amperes. If we now give the hydrogen back its electron, it separates from the oxygen atom again and we can use the energy stored in the hydrogen by burning the hydrogen again. To do this, we first have to provide a performance. We have to build power plants and lots of them. Because this conversion of electrical energy into hydrogen and back from hydrogen into electrical energy is very lossy. With this back and forth we lose a smooth 85% to 87%. Another 5% to 10% are lost through cables so that we have to build about 90% to 97% more power plants for the electric use of hydrogen than if we were to use the electrical energy directly.

Test result: Conversion of electrical energy into hydrogen - hydrogen into electrical energy:

Only 13 -15% of the electrical energy taken from the network could be fed back; 85% and 87% of the electrical energy was lost during the conversion of electrical energy into hydrogen and the conversion of hydrogen back into electrical energy in the 2003 experiment at the FTZ in Büsum.

The storage of electrical energy in hydrogen is therefore a very, very lossy variant of the storage.

Electrolysers: First of all, let's take a look at the conversion of electrical energy into hydrogen. Everyone knows this process from chemistry lessons, it is called electrolysis:

PEM_Elektrolyser

Electrolyser model Source: Davidlfritz

Its nice. Isn´t it? Hydrogen picks up electrons and is reduced, oxygen emits electrons and is oxidized. In between there is a membrane that only allows the tiny ionic bodies of the hydrogen can pass through. This make sure the two atoms are separated. The efficiency is 75% -80%

The fuel cell:

Fuel Cell

How a polymer electrolyte fuel cell works Source: bbs-brv.de

It also goes back, hydrogen emits electrons, there is an excess of electrons on this side, these electrons then rush around to the other side through the resistance, on the other side there is a lack of electrons, here the oxygen now absorbs electrons and will reduced. the protons of hydrogen arrive again through a membrane, through which they can only pass without electrons, to the other side. There the hydrogen combines with the oxygen again, water and heat are generated.

Single fuel cell Source: Planet Wissen000s Spacer 1Fuel cell stack Source: NASA


Single fuel cell and a fuel cell stack

Both systems are always processed in stacks in order to get more performance.

Reformation:

By the way, a tree also does such things. However, with solar energy he transforms water and carbon dioxide CO² from the air into three main components: cellulose, hemicellulose and lignin, which are among the hydrocarbon compounds and we call it wood. He cannot use the oxygen and so he simply excretes it. Most other plants do this too, and therfore we can breathe. I think it's a fine thing. Aren't the plants great creatures? I mean, after all, we owe our lives to them. And not only that. The next time you get into your car please remember that you only drive because your tank contains the crushed body parts of the grandparents of our tree. This stuff, mostly gasoline or diesel, belongs to the hydrocarbon group. Because for burning we also need oxygen there is a lot of CO². This is the stuff we are having so many problems with right now.

Hydrocarbons Source: Wikipedia

However, we can also directly produce pure hydrogen from these hydrocarbon compounds. We call this process reforming. In addition to hydrogen, this process produces, among other things, carbon monoxide CO, carbon dioxide Co² and nitrogen in not insignificant quantities. The efficiency (natural gas to hydrogen) is only approx. 60 to 70%.

Steam reforming Source: Screenshot


We now have hydrogen and want to convert it back into electrical energy. The hydrogen turbine for stationary use drives a generator and could also be used in aircraft to generate pushenergy.

Micro turbine Source: E-Quad Power Systems000s Spacer 2Power Turbine Source: Mitsubishi Hitachi Power Systems
Micro and power turbines


Other types of drives:

There is of course also a hydrogen combustion engine based on the Otto principle, its efficiency is around 35%, it is therefore better than a petrol engine, whose efficiency is around 28% and worse than a diesel engine that runs with an efficiency of around 40%. Lube oil consumption causes traces of carbon dioxide, carbon monoxide and hydrocarbons in the exhaust gas. However, the performance is lower than that of gasoline engines and there are a number of other problems, whose elimination are cumbersome and this makes to produce a hydrogen engine very expensive . The efficiency of a hydrogen combustion engine is significantly worse than that of fuel cell vehicles and electric cars with a drive battery, which have an efficiency of up to 90%. The electric motor is simply unbeatable.

Conclusion:


However, when implemented via a fuel cell, only 13% -15% of the original output of the electrical energy that was invested is achieved, which actually makes the fuel cell an absolute loser.

In the whole “hydrogen discussion” we should also consider what would be if there were 200,000 in the air (busy day in the air) and 1.6 billion potential hydrogen bombs on the ground.

Of course, the producers say the gas tanks are safe, but gas vans continue to explode practically all the time, the last one again in Provence Zhejiang, China, with 19 deaths and 172 injuries.

Where should the energy for all these projects come from? The Desertec project

When I wrote my first writings in 2003, the idea of ​​getting the combustion engines off the road and replacing vehicles powered by electric motors was almost anti-constitutional. In 2018, a politician postulated that the diesel would never disappear. My idea in this regard of building a network consisting mainly of solar thermal power plants met with little interest. In 2010, however, the idea was finally picked up that desert electricity would now be conducted to Europe via high-voltage direct current lines, and the Desertec Industry Initiative was born. By 2050, at least 15% of European electricity demand should be met by electricity from the Sahara. The Desertec Foundation played the first major role, the second a consortium from industry, energy and banking.

But soon there were disputes, one group wanted to export energy straight away and the other wanted to first fully supplied the Mena countries (Middle East North Africa). 2013 then the end, it is said to continue working on it, but so far nothing has happened. Withdrawn companies believe that the MENA region is one of the most politically unstable in the world, uneasy, with deficits in legal certainty, and with changing economic conditions. the politic should acting they say. There were certain approaches to this, but here the speech quickly seeped into the ground of, let's do it another time.

Technically there was a change of views. In terms of short-term energy costs, the solar thermal power plants that dominated the planning for Desertec solar technology had to let the cumbersome and ecologically questionable photovoltaics go by.

The energy production costs of a PV system are between 8 and 14 cents / kWh, depending on the location in Germany. The cost of energy generation in solar thermal power plants in southern Spain is between 14 and 20 cents / kWh. This makes it clear: money rules the world against all reason.

The authors of a Fraunhofer study on the production costs of electricity from renewable sources comment on their research results: ğDue to the sharp cost reductions for PV systems in recent years, PV power plants at the same location have a" short-term "cost advantage compared to CSP power plants."

CSP = Concentrated Solar Power; Solar thermal power plants; PV = photovoltaic

Well, because of the more recent situation, the temperatures have risen faster than expected in recent years, the citizens are slowly getting scared and are demanding an energy turnaround, the matter is coming up again, the German economy minister is starting to calculate slowly. At least he found that the energy transition alone is obviously not possible.

However, without switching off the existing coal-fired power plants, without switching vehicles, Europe does not need any additional electrical energy. France will also not want to part with its nuclear power plants. Poland still relies entirely on coal. The possibility of conversion would not be possible without outside help. The urgent need for a large joint initiative has not yet reached the heads of those who are spoiled for success.

It is a shame that the necessity must be a reason for action and that it is not an excuse and solidarity.


Desertec Plan Source: Desertec

Dimensions:

So that you can see the dimensions of the energy conversion, here is a small calculation:

World energy consumption is currently 590 exajoules per year (source: BMWI), which is the equivalent of 163,889 TWh per year

As an example: The "Noor" solar thermal solar power plant in Quarzazate Morocco: output 580 MWh, 580 MWh x 24 (hours per day) x 365 (days per year) = 5,080,800 MWh or 5.09 TWh / a

163,889 TWh / a: 5.09 TWh / a = ~ 32,198 Noor power plants would theoretically be needed continuously to cover the current energy requirements. Doesn't look like that much, but it is this number that has to be constantly on the Net and can also supply energy. At best, solar power plants deliver 12-13.5 hours of full energy per day. Since these systems have a storage, you can still generate energy at night, but only 3 hours. 4MW wind turbines may only deliver 1.6-1.8 MW of power per year. So we need a lot more systems. Let's start with twice as many. The consideration would be how do we distribute the solar power plants and wind turbines in such a way that there is always enough energy for the respective needs. An international energy network would make it easier, more efficient and cheaper to secure an optimal supply. If everyone builds for themselves, a lot of excess capacity has to be made available, which drives up costs. * Especially in the case of wind turbines, the widest possible sharing is very useful.


The situation in the so-called MENA room

Since this area was discovered by Europe and America, we have been exploiting this region mercilessly. Poor people are fighting for what is there. After 1945, the USA commissioned a study to determine why fascism occurred in Germany and they came to the realization that it was mainly the poor economic conditions that were responsible for it.

If we turn up there again, build power plants in which no local people find work, we let the region dry up further and do not care about the people, they will continue to fight for what is there and we will be just another nuisance. Since they know us from experience, they will not really be open to us.

So we should really present a plan there that will primarily advance the local population. As far as the existing business relationships are concerned, they should be adjusted accordingly. We owe everything we treat ourselves to in terms of the fact that people live there in huts that we would not even go into. For hundreds of years we have been dragging everything valuable out of these countries and forcing people to live there like dogs because they have to work for us. In Chile people die of thirst because German companies grow avocados there and rob the surrounding area of ​​groundwater. In Africa, people die because they burn our electronic waste in order to extract copper and other metals from it in order to survive. All of this must come to an end quickly.

If we change capitalism so that it can be defused and work succesfull under strict supervision, if we see that this capitalism, as it is now, eats its own host and completely paralyzes us when we start doing that of whom we know is the only right thing, because it is reasonable and intelligent, then we will come together, in the still as well zones as with the restless zones of the world. Because the split in almost all countries into the right and left are all caused by capitalism and its consequences, just like climate change.

If we do not manage to act as it is actually necessary, but only depending on whether it brings, quick money or not, in the hope of living from what falls behind for us, we will oversleep the change and only then get active when it's too late.

About photovoltaic waste:


Photovoltaik Wastet Source: Screenshot

Everything very nice, recycling rules, recyclability up to 80%

We produce, very elaborately, with some rare metals, which we remove from the sea or from the ground while destroying nature, elaborate modules which then last a maximum of 30 years and have to be recycled with a lot of energy, the plastics will converted into gases such as methane, propane and butane, which are then burned and produce CO² once again.

According to estimates, the number of old modules to be used in Germany alone will increase to 50,000 t by 2026 and quadruple again to 200,000 t by 2040.

It is a 270 million euro market and 35% growth is expected.

As my father used to say: “Why easy, if it can be cumbersome. The reason for choosing the better solution here is again the money. The cumbersome and dirty solution is simply cheaper and therefore promises more profits. Again, the money dictates and approves of the destruction of nature. I wonder when this will finally stop. The producer must clearly calculate all costs for his product, including the disposal costs. He also has to take care of the disposal, take back the product and pay everything very clearly. He may not throw anything that is not natural into the landscape anywhere. This would push up the price of most products to such an extent that these products would disappear from the market. As long as the general public tacitly assumes these costs, it will never be clear that a robotic lawnmower in reality costs 29,900 euros instead of 299 euros.

With good maintenance, a solar thermal power plant can be operated, converted and adapted for several generations. The materials required for this are available in abundance, do not first have to be digged up and constantly recycled. The whole maintenance effort is much less. The systems are not as susceptible to faults as photovoltaic systems. In addition, PV modules are not robust enough for use in desert areas anyway, and they have an extremely large ecological footprint even during manufacture.

The ecological footprint is understood to mean the biologically productive area on earth that is necessary to permanently enable a person's lifestyle and standard of living. It is referred to as a sustainability indicator. Wikipedia

So solar thermal power plants are preferable to the cumbersome photovoltaic systems for reasons of climate protection and reason.

Photovoltaics should be used where there is no other option, mainly on the roofs of houses, especially in the north, for which the centralization laws of feeders must be repealed, i.e. Small operators of photovoltaic systems must also be able to sell their energy, including directly to private individuals.

About our lifestyle:

Our lifestyle doesn't really have to change that much. It is a fear fairy tale that is deliberately brought up in various discussions to bring the workers and employees complicit.

With the right methods and products, the whole world, even with 10 billion people, can live a very pleasant prosperity anywhere.

What is then no longer possible, however, is that capital grows exponentially and this leads again and again to the fact that 10% of the population hoard 90% of all financial resources, blackmailing us all into doing what brings even more profits whether it makes sense or Not.




To the top
    To the top   000e EN   000e DE   

Home   Energy   Water   Work   Economy    Solutions    Politics   Team   Products   Recycling   Cars   Ships   Aircrafts   Promotion 

World    Pollution   Air   Weather   Violence    Women    Weapons   Psychology    Plants   Animals   Food    Peace   Faith    Imprint